Phaser and StampedLock Concurrency Synchronizers 1

///,__ . e

/ Phaser and StampedLock

Concurrency Synchronizers
e

g’

/

/

Dr Heinz M. Kabutz
www.javaspecialists.eu

pansasay syby |1y — zIngey) zuleH ¥10Z-€1L0Z @

Last updated 2014-12-17 =

 Javaspecialists.eu

ava yaini ng

© 2013-2014 Heinz Kabutz — All Rights Reserved

Phaser and StampedLock Concurrency Synchronizers

Heinz Kabutz

- | ® Brief Biography
— German from Cape Town, now lives in Chania on island of Crete

— The Java Specialists' Newsletter
135 countries

)
J

=’ java’
y_

Champions

— Java Champion since 2005

— JavaOne Rock Star Speaker

Jovasp"qclollsts.ou

pansasay syby |1y — zIngey) zuleH $10Z-€1L0Z @

=
7
-
-
Q
O
)
>
<
—
e
P
Q
-
)
>
o
<
-
<
e
2
L
'
D)
=
%)
-
8=
o
—

R e

R

‘\
>
-.lt
.~
’
4
s
e
.
»
g :
f -
" |
~“ 4

U o

o
» 3

AS
ay
e

D
2.
S

-
N
,

’\

-

e

© 2013-2014 Heinz Kabutz - All Rights Reserved

.Jovqgggg:rlé;y&té.eu

Phaser and StampedLock Concurrency Synchronizers

Why Synchronizers?

® Synchronizers keep shared mutable state consistent

— Don't need if we can make state immutable or unshared

® But many applications need large amounts of state

— Immutable would stress the garbage collector

— Unshared would stress the memory volume

® Some applications have hash maps of hundreds of GB!

Jovasp"qclollm .eu
pansasay sIYBIY ||V — ZIngey] ZuleH ¥10Z-£1L0Z @

'Y.: 2 e '.'h’_ L:::‘) A }'}
o

- | -
 Ph r anc
v GV AR

B Coarse Grained Locking

® Overly coarse-grained locking means the CPUs are
starved for work

— Only one core is busy at a time

® Took 51 seconds to complete

pansasay sybry |1y - zZInqe)] zuleH ¥10Z-€10Z @

Phaser and StampedLock Concurrency Synchronizers

Fine Grained Locking

® "Synchronized"” causes voluntary context switches

— Thread cannot get the lock, so it is parked
3 * Gives up its allocated time quantum

® Took 745 seconds to complete

e
g

® It appears that system time is 50% of the total time

pansasay sybiy 11y — zingey] zuleH 10Z-£10Z O

— So should this not have taken the same elapsed time as before?

Phaser and StampedLock Concurrency Synchronizers

Independent Tasks With No Locking

® Instead of shared mutable state, every thread uses only
local data and in the end we merge the results

3. ® Took 28 seconds to complete with 100% utilization

.
N N
N N

Javasg

pansasay sybiy 11y — zingey] zuleH 10Z-£10Z O

Phaser and StampedLock Concurrency Synchronizers

Nonblocking Algorithms

® Lock-based algorithms can cause scalability issues

— If a thread is holding a lock and is swapped out, no one can progress

® Definitions of types of algorithms

— Nonblocking: failure or suspension of one thread, cannot cause
another thread to fail or be suspended

— Lock-free: at each step, some thread can make progress

Jovasp"qclollm.ou
pansasay sIYBIY ||V — ZIngey] ZuleH ¥10Z-£1L0Z @

© 2013-2014 Heinz Kabutz - All Rights Reserved

@)

1 = 0
o Bie
S 3
X [
- 0
O Q5
UL %
= £
=
T
<@

L

)

ronizer compa

Phaser and StampedLock Concurrency Synchronizers

Synchronizers - Structural Properties

® Encapsulate state that determines whether arriving
threads should be allowed to pass or forced to wait

® Provide methods to manipulate that state

® Provide methods to wait (efficiently) for the synchronizer
to enter a desired state

Jovasp"qclollm.ou
pansasay sIYBIY ||V — ZIngey] ZuleH ¥10Z-£1L0Z @

Phaser and StampedLock Concurrency Synchronizers

CountDownLatch

® A latch is a synchronizer that blocks until it reaches its
terminal state, at which point it allows all threads to pass

® Once it reaches the terminal state it remains open forever

® Ensures that activities do no start until all of the
dependent activities have completed. For example:

— All resources have been initialized

Jovasp'gcooum.ou

— All services have been started

— All horses are at the gate

pansasay sybY || — zInge)y] zuleH $1L0Z-€1L0Z @

Phaser and StampedLock Concurrency Synchronizers

Interface: CountDownLatch

public class CountDownLatch {

Fixed number of |
1n1t1a1 pernnts “

CountDownLatch(int count)

void await() throws InterruptedException
boolean await(long timeout, TimeUnit unit)
throws InterruptedException

Javaspecialists.eu

‘ A thread can walt for ‘
count to reach ZEro ,;

pansasay syby ||y — zInge)y) zuleH $10Z-€1L0Z @

: ' We can count down, but |
void countDown() |
y never up. No reset p0331ble N

Phaser and StampedLock Concurrency Synchronizers 14

countDown

Cou ntDown LatCh await(timeMs, TimeUnit.MILLISECONDS)
Thread Count: a

Acquire attempt failed

~ 1 ® Concurrent Animation
by Victor Grazi

— Www_jconcurrency_com C()lllltD()WnLatCh

® Threads are waiting _)5

until the count down —
. —_—
latch is zero

— Then they immediately
continue running

pansesay siyby |1y — zinge)y] zuleH ¥10Z-€1L0Z @

Phaser and StampedLock Concurrency Synchronizers

Code sample: CountDownLatch

Service getService()
throws InterruptedException {
serviceCountDown.await():
return service;
s
void startDb() {
db = new Database();
db.start();
serviceCountDown.countDown();

¥

Javasp"qclousts.ou

void startMailServer() {
mail = new MailServer();
mail.start();
serviceCountDown.countDown():

¥

pansasay syby |1y — zIngey) zuleH $10Z-€1L0Z @

Phaser and StampedLock Concurrency Synchronizers

CyclicBarrier

® CyclicBarrier is similar to CountDownLatch

— Group of threads blocks until all have reached the same point

— But then it is reset to the initial value

® CyclicBarrier allows a fixed number of parties to
rendezvous repeatedly at a barrier point

® CyclicBarrier also lets you pass a "barrier action” in the
constructor

Jovasp'gcooum.ou

— The Runnable is executed when the barrier is successfully passed
but before the blocked threads are released.

pansasay sybY || — zInge)y] zuleH $1L0Z-€1L0Z @

Phaser and StampedLock Concurrency Synchronizers

Interface: CyclicBarrier | ried number

. | | . :
public class CyclicBarrier { [P W&
 regularly

CyclicBarrier(int parties) .
CyclicBarrier(int parties, Runnable barrlerActlon)

int awalt() throws InterruptedExceptlon
BrokenBarrierException
int await(long timeout, TimeUnit unit)
throws InterruptedException,
BrokenBarrierException,
TimeoutException

Jovosp"qcioum .eu
pansasay sIYBIY ||V — ZIngey] ZuleH ¥10Z-£1L0Z @

void reset()

}

Phaser and StampedLock Concurrency Synchronizers 18

CyCIICBa rrler await(timeMS, TimeUnit.MILLISECONDS)
N
~ | ® Concurrent Animation

by Victor Grazi Thread Count: [8

CyclicBarrier

pansasay sybiy 11y — zingey] zuleH 10Z-£10Z O

Phaser and StampedLock Concurrency Synchronizers

Phasers

® Mix of CyclicBarrier and CountDownlLatch functionality

— But with more flexibility

® Registration

— Number of parties registered may vary over time
« Same as count in count down latch and parties in cyclic barrier

— A party can register/deregister itself at any time

— In contrast, both the other mechanisms have fixed number of parties

Jovosp‘gclollsts.ou

® Compatible with Fork/Join framework

pansasay sybY || — zInge)y] zuleH $1L0Z-€1L0Z @

Phaser and StampedLock Concurrency Synchronizers

Interface: Phaser Registration Methods

“|public class Phaser {

_ _ Imtlal rt b th |
Phaser(Phaser parent, int parties) patties = oo

parameters are optlonal |

' Phasers can be
arranged 1n tree to |
reduce contention |

S

— Znqey| zu1eH ¥10Z-€1L0Z @

int register() ' We can change the |
parties dynamically |
int bulkRegister(int parties) by calhngreglster() J

>
®
w
e
-
[
wv
O
-
O
-

paAsasay sybry Iy

Phaser and StampedLock Concurrency Synchronizers

Interface: Phaser Signal And Wait Methods

public class Phaser { (continued..)

int arrive() —
int arriveAndDeregister() ﬂfhgnalonb;]

~ Wait only - default
int awaitAdvance(int phase) | s to save interrupt |

= ————

int awaitAdvancelnterruptibly(int phasel, timeout])
throws InterruptedException

Javaspecialists.eu

pansasay syby ||y — zInge)y) zuleH $10Z-€1L0Z @

Signal and wait - |
also saves 1 ‘

———

int arriveAndAwaitAdvance() |

Phaser and StampedLock Concurrency Synchronizers

Interface: Phaser Action Method

" |public class Phaser { (continued..)
protected boolean onAdvance
int phase, int registeredParties)

: ’ .
e N ' Override onAdvance()
= to let phaser ﬁmsh early x‘
= f

'3

o

&

o

>

L,

pansasay syby ||y — zInge)y) zuleH $10Z-€1L0Z @

* Bunch of lifecycle
| ~methods lt ot | J{

Phaser and StampedLock Concurrency Synchronizers

E.G. Coordinated Start Of Threads

- | ® We want a number of threads to start their work together

— Or as close together as possible, subject to OS scheduling

® All threads wait for all others to be ready

— Once-off use

— CountDownlLatch or Phaser

Javasp"qclousts.ou
pansasay sYbIy |1V — ZIngey zuieH ¥10Z-£10Z @

Phaser and StampedLock Concurrency Synchronizers

CountDownLatch: Waiting for threads to start

" Istatic void runTasks(List<Runnable> tasks)
throws InterruptedException 1
int size = tasks.size() + 1;
final CountDownLatch latch = new CountDownLatch(size);

@

N

e

W

N

e

N =N

T

o

-

~+| for (final Runnable task : tasks) { -
) x
® new Thread() {)
= public void run() { =
o try { i?
. latch.countDown(); >
§ latch.await(); 2
% System.out.println("Running " + task);)
- task.run(); =
i } catch (InterruptedException e) { /% returning */ } 2
s »
}.start(); s
Thread.sleep(1000); a

}

latch.countDown():

Phaser and StampedLock Concurrency Synchronizers

CountDownLatch: Dealing with Interruptions

® "Saving"” interruptions until we can deal with them is a lot
of work with CountDownLatch

@

N

3

(98

N

3

=

-

o

5 public void run() { N
: latch.countDown(): =
y boolean wasInterrupted = false; g
5 while (true) {]
o try { &
2 latch.await(); =
3 break; A
2 } catch (InterruptedException e) { E:
. wasInterrupted = true; "
}

I3 ®

1f (wasInterrupted) Thread.currentThread().interrupt(); 5
System.out.println("Running: " + task); Q.

task.run();

Phaser and StampedLock Concurrency Synchronizers

Phaser: Waiting For Threads To Start

® The code for Phaser is simpler and more intuitive

static void runTasks(List<Runnable> tasks)
throws InterruptedException {

- final Phaser phaser = new Phaser(1l); // we register ourselves
: for (final Runnable task : tasks) {
“ phaser.register(); // and we register all our new threads
o new Thread() {
0 public void run() {
-{{ phaser.arriveAndAwaitAdvance();
& System.out.println("Running: " + task);
> task.run();
3 }
}.start();
Thread.sleep(1000);

pansasay sybY || — zInge)y] zuleH $1L0Z-€1L0Z @

}

phaser.arriveAndDeregister(); // we let the main thread arrive

} \

phaser.arrive() and phaser.arriveAndAwaitAdvance() also work

Phaser and StampedLock Concurrency Synchronizers

Waiting For A Set Number Of Phases

® The CyclicBarrier does not know how many times we have
passed through

® The Phaser remembers the "phase™ we are In

— If we go past Integer.MAX VALUE, it resets to zero

1 ® We do this by subclassing Phaser and overriding

onAdvance()

private void addButtons(int buttons, final int blinks) {
final Phaser phaser = new Phaser(buttons) {
protected boolean onAdvance(
int phase, int registeredParties) {
return phase >= blinks - 1 ||
registeredParties == 0,

Javaspecialists.eu

pansasay sybY || — zInge)y] zuleH $1L0Z-€1L0Z @

[/ o

Jovosp‘gclollsts.ou

Setting The Buttons A Random Color

® We carry on changing color until the phaser is terminated

new Thread() {
public void run() {
Random rand = ThreadLocalRandom.current();

try {

do {
Color newColor = new Color(rand.nextInt()):

C
T
C

Toolkit.getDefaultToolkit().beep();
Thread.sleep(2000);

Phaser and StampedLock Concurrency Synchronizers

hangeColor(comp, newColor); // sets it with the EDT
nread.sleep(rand.nextInt(500, 3000));

nangeColor(comp, defaultColor);

phaser.arriveAndAwaitAdvance();

} while ([Tphaser.isTerminated()]);

} catch (InterruptedException e) { return; }

¥
}.start()

pansasay sybY || — zInge)y] zuleH $1L0Z-€1L0Z @

"
’

Phaser and StampedLock Concurrency Synchronizers

Sample Run With Phaser

- | ® Running with 20 buttons and 3 phases

— Note, all the phases start at the same time for the 20 threads, but
each phase ends when the color is reset to the original

— With CyclicBarrier, we would have had to count the phases ourselves
SN O

Button O

Button 1 Button 2 Button 3

Javasp"qclaum.ou

N
oo
-
-
)
=
o

pansasay syby |1y — zIngey) zuleH $10Z-€1L0Z @

Button § Button 6 Button 7

N

Button 8 Button 9 Button 10

{ Button 11

{

Button 14 |

\

Button 15 '

{ Button 19

7z

Button 12 Button 13

Button 16 Button 17 Button 18

Phaser and StampedLock Concurrency Synchronizers

Tiered Phasers

® Phasers can be arranged in a tree structure to reduce
contention

® It is a bit complicated to understand (at least for me)

— Parent does not know what children it has

— When a child is added, parent # parties increases by 1
e If child's registered parties > 0

— Once child arrived parties == 0, one party automatically arrives at
parent

Mvaschhllsh .eu

— If we use arriveAndAwaitAdvance(), we have to wait until all the

pansasay sybiy 11y — zingey] zuleH 10Z-£10Z O

parties in the whole tree have arrived

 Thus the parties in the current phaser have to all arrive and in the
parent

Phaser and StampedLock Concurrency Synchronizers

Tiered Phasers

® When a child phaser has non-zero parties, then the parent
parties are incremented

@
N
s
(98
N
s
N Y
T
o
=) N
) Phaser root = new Phaser(3); =
2 Phaser cl = new Phaser(root, 4); o
=z Phaser c2 = new Phaser(root, 5); =
-3 Phaser c3 = new Phaser(c2, @) |
a System.out.println(root); >
- System.out.println(cl); o
s System.out.println(c2);)
S System.out.println(c3); @
g
® outputs :
jau.c. Phaser[phase = @ parties = 5 arrived = 0] (root) a
j.u.c.Phaser[phase = @ parties = 4 arrived = 0] (cl)
] u.c.Phaser[phase = 0@ parties = 5 arrived = 0] (c2)
j.u.c.Phaser[phase = @ parties = 0 arrived = 0] (c3)

Javaspecialists.eu

Phaser and StampedLock Concurrency Synchronizers

Phaser "Root" Is Created With 3 Parties

pansasay sybry |1y — zInge)] zuleH $10Z-£10Z @

Phaser and StampedLock Concurrency Synchronizers

Phaser "C1" Is Created With 4 Parties

Increases parties |
1n "root" phaser |

—

Javaspecialists.eu
paAsasay sIybIy 1Y — zinqge)] zuidH y1L0Z-£1L0Z O

Phaser and StampedLock Concurrency Synchronizers

Phaser "C2" Is Created With 3 Parties

1

'Again increases parties |
~1n "root” phaser |

Javaspecialists.eu
paAsasay sIybIy 1Y — zinqge)] zuidH y1L0Z-£1L0Z O

JOVOSP.ClO"S“..U

Phaser and StampedLock Concurrency Synchronizers

Phaser "C3" Is Created With 0 Parties

Does not |
- increase parties |
- 1n "c2" phaser, |
[because c3's ;‘

parties == |

pansasay sybry |1y — zInge)] zuleH $10Z-£10Z @

Phaser and StampedLock Concurrency Synchronizers

Only Synchronizer Compatible With Fork/Join

® [JavaDoc] Phasers may also be used by tasks executing
in a ForkJoinPool which will ensure sufficient parallelism

2 to execute tasks when others are blocked waiting for a
| phase to advance.
§ ® Fork/Join Pools do not have an upper limit on threads
PP
" — They have a parallelism level and the FJ Pool will try to have at least
g that many active threads to prevent starvation

— If one of the active threads is paused waiting for a phaser, another is
simply started to maintain required parallelism

pansasay sybiy 11y — zingey] zuleH 10Z-£10Z O

* No other wait would do that

— Condition.await(), wait(), Semaphore.acquire(),
CountDownLatch.await(), etc.

Phaser and StampedLock Concurrency Synchronizers

public class ForkJoinPhaser {

public static void main(Stringl[] args) {
ForkJoinPool fjp = new ForkJoinPool();
fjp.invoke(new PhasedAction(100, new Phaser(100)));
System.out.println(fjp);

s

private static class PhasedAction extends RecursiveAction {
private final int phases;
private final Phaser ph;
private PhasedAction(int phases, Phaser ph) {

@
N
s
W
N
s
N Y
T
o
-
F+ this.phases = phases; this.ph = ph; ;
» s Q
> protected void compute() { e
- if (phases == 1) { N
'S System.out.printf("wait: %s%n'", Thread.currentThread()); :L
2 ph.arriveAndAwaitAdvance(); =
5 System.out.printf("done: %s%n", Thread.currentThread()); A
Q
> } else { =
2 int left = phases / 2; 7y
int right = phases - left; X
invokeAll(new PhasedAction(left, ph), ®
new PhasedAction(right, ph)); >
} 2

s

Phaser and StampedLock Concurrency Synchronizers

Threads Are Created To Maintain Parallelism g

@

done: Thread[ForkJoinPool-1-worker-227,5,main] S
done: Thread[ForkJoinPool-1-worker-239,5,main] >
done: Thread[ForkJoinPool-1-worker-197,5,main 0

2 done: Thread[ForkJoinPool-1-worker-209,5,main. N
| done: Thread[ForkJoinPool-1-worker—-253,5,main] &
““Jdone: Thread[ForkJoinPool-1-worker-139,5,main] g
.g done: Thread[ForkJoinPool-1-worker— ,main] \
,ajdone: Thread[ForkJoinPool-1-worker-179, 5, main] 2
“Hdone: Thread[ForkJoinPool-1-worker-20/,5,main. X
_ Q
~4ForkJoinPool]| I
S Running »
’ A
parallelismn= 2, I @
size = 100, g

Q.

active = 0, running = 0, steals = 100,
tasks = @, submissions = 0]

Phaser and StampedLock Concurrency Synchronizers

Synchronizers Summary

~ | ® CountDownLatch

— Makes threads wait until the latch has been counted down to zero

® CyclicBarrier

— A barrier that is reset once it reaches zero

1 ® Phaser

— A flexible synchronizer in Java 7 to do latch and barrier semantics

Javaspecialists.eu

* With less code and better interrupt management

pansasay syby |1y — zIngey) zuleH $10Z-€1L0Z @

© 2013-2014 Heinz Kabutz - All Rights Reserved

40

.Javqgggg:rlgyg‘tg.eu

Phaser and StampedLock Concurrency Synchronizers

Motivation for StampedLock

® Some constructs need a form of read/write lock

® ReentrantReadWriteLock can cause starvation (next slide)

— Plus it always uses pessimistic locking

® StampedLock provides optimistic locking on reads

— Which can be converted easily to a pessimistic lock

® Write locks are always pessimistic

Jovosp‘gclollsts.ou

— Also called exclusive locks

pansasay sybY || — zInge)y] zuleH $1L0Z-€1L0Z @

Phaser and StampedLock Concurrency Synchronizers

Read-Write Locks Refresher

- | ® ReadWriteLock interface

— The writeLock() is exclusive - only one thread at a time

— The readLock() is given to lots of threads at the same time
e Much better when mostly reads are happening

— Both locks are pessimistic

Javasp“qclollsfs.cu
paAsasay syby |1V — ZIngey zuleH ¥10Z-€10Z @

Phaser and StampedLock Concurrency Synchronizers

Bank Account with ReentrantReadWriteLock

public class BankAccountWithReadWriteLock {
private final ReadWritelLock lock =
new ReentrantReadWritelLock();
private double balance;

@)
N
2
W
N
2
¥ =N
)
g public void deposit(double amount) <{ N
- lock.writelLock().lock(); D
» try { e
© balance = balance + amount; N
'y } finally { !
2 lock.writeLock().unlock(); ——— —
o ; ~ The cost overhead of | &
> } | =3
3 public double getBalance() { the RWLock means @
lock. readLock().lock(); we need at least 2000 | g
t“'[eium T “instructions to benefit | S
} finally { ' | from the readLock() | a

lock. readLock().unlock(); L added throughput

1 —

s

i

Phaser and StampedLock Concurrency Synchronizers

ReentrantReadWriteLock Starvation

® When readers are given priority, then writers might never
be able to complete (Java 5)

® But when writers are given priority, readers might be
starved (Java 6)

| ® See http://www.javaspecialists.eu/archive/lssue165.html

Javaspecialists.eu
pansasay siybry |1y — ZIngey] zuleH #10Z-£10Z ©

cialists.eu

Javasg

Phaser and StampedLock Concurrency Synchronizers

Java 5 ReadWriteLock Starvation

® We first acquire some
" niocko | ooungradatoress

Thread Count: n=

read locks

® We then acquire one
write lock

ReadWriteLock

® Despite write lock waiting,
read locks are still issued

® If enough read locks are
Issued, write lock will
never get a chance and
the thread will be starved!

pansasay sybY || — zInge)y] zuleH $1L0Z-€1L0Z @

Phaser and StampedLock Concurrency Synchronizers

ReadWriteLock in Java 6

® Java 6 changed the policy and
now read locks have to wait ook | oownsracetorean

until the write lock has been hread Count: [N
. Waiting to acquire READ lock
iIssued

ReadWriteLock
| ® However, now the readers can

be starved if we have a lot of
writers

Javaspecialists.eu

pansasay sybiy 11y — zingey] zuleH 10Z-£10Z O

Phaser and StampedLock Concurrency Synchronizers

Synchronized vs ReentrantLock

® ReentrantReadWriteLock, ReentrantLock and
synchronized locks have the same memory semantics

3 ® However, synchronized is easier to write correctly
"'":; synchronized(this)
o // do operation
§ ,
o — - wlock.writeLock().lock();
o try {
// do operation
} finally {

pansasay sybY || — zInge)y] zuleH $1L0Z-€1L0Z @

rwlock.writeLock().unlock();

¥

R — R

Phaser and StampedLock Concurrency Synchronizers

Bad Try-Finally Blocks

| ® Either no try-finally at all: rwlock.writelLock().lock();
// do operation

rwlock.writeLock().unlock():
T — T

3, ® Or the lock is locked inside the try block
§

= try {

5 rwlock.writeLock().lock();
a // do operation

2 } finally {

> rwlock.writeLock().unlock();
= I3

® Or the unlock() call is forgotten in some places altogether!

pansasay syby |1y — zIngey) zuleH $10Z-€1L0Z @

rwlock.writeLock().lock();
// do operation
// no unlock()

T — T ——

Phaser and StampedLock Concurrency Synchronizers

Introducing StampedLock

- | ® Pros

— Has much better performance than ReentrantReadWriteLock

— Latest versions do not suffer from starvation of writers

® Cons

— Idioms are more difficult to get right than with ReadWriteLock

— A small difference can make a big difference in performance

Javasp"qclousts.ou
pansasay sYbIy |1V — ZIngey zuieH ¥10Z-£10Z @

Phaser and StampedLock Concurrency Synchronizers

"*»Methods for mani

Interface: StampedLlLock exclusive write locks
(pessimistic)

public class StampedLock {
long writelLock()

» - AI9H ¥102-€102 ©

1 itel | Ny
ong writeLockingggruptib Lyyyy Nﬁﬂhodsnﬁum1arunnberasa~

throws InterruptedException . J
stamp. A value of zero means

long tryWritelLock() no write lock was granted

—— ___

_ t;“’ =

long tryWritelLock(long time, TimeUnit unit)
throws InterruptedException

o
&
5
3
g
=
2

void unlockWrite(long stamp);

boolean tryUnlockWrite(): | Stamp returned by wrlteLock()

pal-:-—au syby |y’

Lock asWriteLock(): Upgrade toa
long tryConvertToWriteLock(long stamp); W“WHEIOCK‘

Phaser and StampedLock Concurrency Synchronizers 51

Pessimistic read is
basically the same as
the write lock |

Interface: StampedLlLock

public class StampedLock { (continued ..)
long readLock();

long readLockInterruptibly()
throws InterruptedException;

long tryReadLock();

long tryReadLock(long time, TimeUnit unit)
throws InterruptedException;

Javaspecialists.eu

void unlockRead(long stamp);
boolean tryUnlockRead();

@
N
(=]
-_—
W
N
(=]
-_—
=N
-
@
s |
N
PN
Q
o
c
]
|
>
A

(@]
=
(/)]
A
(4>]
(V)]
(4>]
2

Optimistic |}

Lock asReadLock(): reads to

long tryConvertToReadLock(long stamp);

Phaser and StampedLock Concurrency Synchronizers

Bank Account with StampedLock

public class BankAccountWithStampedLock {

Javaspecialists.eu

}

private final StampedLock lock = new StampedLock();
private double balance;
public void deposit(double amount) {
long stamp = lock.writeLock();
try {
balance = balance + amount;
} finally {

\ lock.unlockWrite(stamp); i‘MThe StampedLOCk 7

! cheaper than

public double getBalance() { ReentrantReadWriteLock |
long stamp = lock.readLock(); . -
try {
return balance;
} finally {
lock.unlockRead(stamp);
I3
I3

pansasay sybY || — zInge)y] zuleH $10Z-€1L0Z @

Phaser and StampedLock Concurrency Synchronizers

Bank Account With Synchronized/Volatile

public class BankAccountWithVolatile {

¥

Javaspecialists.eu

private volatile double balance;

public synchronized void deposit(double amount) {
balance = balance + amount;

s
public double getBalance() { A
return balance; | Much easier!

} Works because there |
~are no 1nvariants
| across the fields. |

— . e

i,__
|

!

"balance' needs to be |
volatile for two reasons:

l.visibility and 2.1t1sa |
| 64-bit value, so access is 'l‘
[not necessarily atomic

pansasay syby ||y — zInge)y) zuleH $10Z-€1L0Z @

Phaser and StampedLock Concurrency Synchronizers

Example With Invariants Across Fields

® Our Point class has x and y coordinates

— We want to make sure that they always "belong together”

o public class MyPoint {
- private double Xx, y;
= private final StampedlLock sl = new StampedLock();
§ // method is modifying x and y, needs exclusive lock
» public void move(double deltaX, double deltaY) {
% long stamp = sl.writelLock();
5 try {

X += deltaX;

y += deltaY;

} finally {

sl.unlockWrite(stamp);

¥
}

pansasay syby |1y — zIngey) zuleH $10Z-€1L0Z @

Phaser and StampedLock Concurrency Synchronizers

Code Idiom For A Conditional State Change

- |public void changeStateIfEquals(oldStatel, oldState2, .
newStatel, newState2, ...) {
long stamp = sl.readlLock();

- try {

o while (statel == oldStatel && state2 == oldState2 ...) {
i long writeStamp = sl.tryConvertToWriteLock(stamp);

3 if (writeStamp != 0OL) {

0 stamp = writeStamp;

fo statel = newStatel; state2 = newState2;

5 break;

> } else {

-

sl.unlockRead(stamp);
stamp = sl.writelLock();

s
s
} finally {
sl.unlock(stamp);
s
s

pansasay syby ||y — zInge)y) zuleH $10Z-€1L0Z @

Phaser and StampedLock Concurrency Synchronizers

Code Idiom For A Conditional State Change

sl.unlockRead(stamp);
stamp = sl.writeLock();

s
s
} finally {
sl.unlock(stamp);
s
s

©

N

=

»

9public void changeStateIfEquals (aldl - o) N
news{ We getapesmmmtw ol >

long stamp = sl.readlLock(); Ieadlock | T

try { - f 5

3 while (statel == oldStatel && state2 == oldStateZ), 1 ;
. long writeStamp = sl.tryConvertToWriteLock(stamp); o
. . c

= if (writeStamp != 0OL) { N
0 stamp = writeStamp; ;
2 statel = newStatel; state2 = newState2; =
5 break; g.
3 } else { >
= ®
2

&

@

S

@

Q.

Phaser and StampedLock Concurrency Synchronizers

Code Idiom For A Conditional State Change N
W
B public void changeStateIfEquals(oldStatel, oldState2, . N
newStatel, newState2, ...) { >
long stamp = sl.readLock(); T
- try { S
o while (statel == oldStatel && state2 == oldState2 ...) { S
- long writeStamp = sl.tryConverti 1 B3
% if (writeStamp !'= L) { [t the state 1s notthe S
o stamp = writeStamp; expected state, we | M
c.; statel = newStatel; stateZ = | unlock and exit method | 2
5 break; e — K
< } else { =
o sl.unlockRead(stamp); =
stamp = sl.writeLock(); &
; 2
} - f — 8

} finally 1 ~ Note: the general unlock() method w

sl.unlock(stamp);

}
I3

i can unlock both read and wr1te locks 1

Javaspecialists.eu

Phaser and StampedLock Concurrency Synchronizers

Code Idiom For A Conditional State Change

B public void changeStateIfEquals(oldStatel, oldStateZ
newStatel, _news

long stamp = sl.readlLock(); - We try COIlVGI’tOI’

try { |
while (statel == oldStatel && sta OthOEr“WHEIOCk

long writeStamp = sl. tryConvertToerteLock(stamp)
if (writeStamp != 0OL) {

stamp = writeStamp;

statel = newStatel; state?2 = newState’;

break;
} else {

sl.unlockRead(stamp);

stamp = sl.writeLock();

s
s
} finally {
sl.unlock(stamp);
s
s

pansasay sybry |1y — zInge)] zuleH #102Z-£10Z @

Phaser and StampedLock Concurrency Synchronizers

Code Idiom For A Conditional State Change

B bublic void changeStateIfEquals(oldStatel, oldState2, .
newStatel, newState2, ...) {
long stamp = sl.readlLock();

try {

@
N
2
¢
N
e
=N
T
]
5 . N
o while (statel == oldStatel && state2 == oldState2 ..:.) { B3
z long writeStamp = sl.tryConvertToWritelLock(stamp); o
. . S
3 if (writeStamp != 0L) { N
o stamp = writeStamp; &
2 statel = newStatel; state2 = newState2; =
- break; Z
3 } else { e —1 B
"o sl.unlockRead(stamp); | If we are able to upgrade to | a
stamp = sl.writelLock(); a write lock (ws 1= 0L), we | &
! change the | B
} I — . — g
} finally {
sl.unlock(stamp);

}
s

Phaser and StampedLock Concurrency Synchronizers

Code Idiom For A Conditional State Change

B public void changeStateIfEquals(oldStatel, oldState2, .
newStatel, newState2, ...) {
long stamp = sl.readlLock();
try {
while (statel == oldStatel && state2 == oldState2 ...) {
long writeStamp = sl.tryConvertToWriteLock(stamp);
if (writeStamp != 0OL) {
stamp = writeStamp;
statel = newStatel; state2 = newState?l;

Jovoquclallsts.ou

break; S =1
1 else { . Else, we explicitly unlock the]
sl.unlockRead(stamp); read lock and lock the erte lock 1

stamp = sl.writeLock(); * S R

} } } | And we try agam

} finally {
sl.unlock(stamp);
s
s

pansasay slllﬁlhl IV — Z)nqe)| zuieH ¥102-€10C ©

Phaser and StampedLock Concurrency Synchronizers

Code Idiom For A Conditional State Change N

@

B public void changeStateIfEquals(oldStatel, oldState2, . N

newStatel, newState2, ...) { >

long stamp = sl.readlLock(); <

= try { S

o while (statel == oldStatel & state2 == oldState2 ...) { S
e long writeStam sl.tryConvert|”]

% if ?wrlteStampp'— oL) {y [f the state 1s not the g

o stamp = writeStamp; expected state, we \ :L

2 statel = newStatel; state2 = | unlock and exit method | E

i break: S — A

o ' @

3 } else { =

e sl.unlockRead(stamp); ',’3

stamp = sl.writeLock(); @

! - This could happen if between the [

} finally { | unlockRead() and the writeLock() |

: sl.unlock(stamp); another thread changed the values |

+

B public void changeStateIquuaU’ Because we hold the write lock,

e the tryConvertToWriteLock()
long stamp = sl.readlLock();

try { o -]
while (statel == oldStatel && state2 == oldState2 ...) {

Javaspecialists.eu

Code Idiom For A Conditional State Change

+

}
}

Phaser and StampedLock Concurrency Synchronizers

method will succeed

long writeStamp = sl.tryCo

if (writeStamp != 0OL) {
stamp = writeStamp;
statel = newStatel; stat
break;

r else {

|
|

|
|

nvertToWriteLock(stamp);

e2 = newState?2?;

sl.unlockRead(stamp);
stamp = sl.writeLock();
I3
I3
finally {
sl.unlock(stamp);

pansasay syby ||y — zInge)y) zuleH $10Z-€1L0Z @

Phaser and StampedLock Concurrency Synchronizers

Applying The Code Idiom To Our Point Class

~ Ipublic void movelfAt(double oldX, double oldY,
double newX, double newY) {
long stamp = sl.readlLock();

try {

@
S
=
S
I
T
o
E | N
) while (x == oldX && y == oldY) { x
.g long writeStamp = sl.tryConvertToWriteLock(stamp); o
3 1f (writeStamp != 0OL) { 5
o stamp = writeStamp; &
2 X = newX; y = newyY; =
& break; 2
«Q
> } else { =
B sl.unlockRead(stamp); %
stamp = sl.writelLock(); %
} 3
} a
} finally {
sl.unlock(stamp);

}
¥

Phaser and StampedLock Concurrency Synchronizers

Interface: StampedLlLock

public class StampedLock { (contlnued o)
long tryOptimisticRead(); —

Try to get an optlmlstlc read lock
d mlght return zero |

boolean validate(long stamp);

checks whether a write AJ
after the tryOptlmlstlcRead() was called]

3

Javaspecialists.eu

Note: sequence validation requires stricter |

| ordering than apply to normal volatile reads -
a New exphmt loadFence() was added N

E————

pansasay sybY || — zInge)y] zuleH $10Z-€1L0Z @

long tryConvertToOptimisticRead(long stamp);

Phaser and StampedLock Concurrency Synchronizers

Code Idiom For Optimistic Read

“|public double optimisticRead() {
long stamp = sl.tryOptimisticRead();

double currentStatel = statel,
- currentState2 = state2, ... etc.;
| 1if ('sl.validate(stamp)) {
= stamp = sl.readLock();
S try {
'y currentStatel = statel;
"§; currentState2 = state?2, ... etc.;
o } finally {
o : sl.unlockRead(stamp);

¥

return calculateSomething(
currentStatel, currentState2);

pansasay syby ||y — zInge)y) zuleH $10Z-€1L0Z @

Phaser and StampedLock Concurrency Synchronizers

Code ldiom For Optimistic Read

B public double optimisticRead() { ~ We get a stamp to use |
long stamp = sl.tryOptimisticRead(); for the optimistic read |
double currentStatel = statel, — e
currentState?2 = state?, ... etc.;
if (!sl.validate(stamp)) {
stamp = sl.readlLock();
try {
currentStatel Statel;
currentState? state?2, ... etc.;
y finally <
sl.unlockRead(stamp);
s
I3

return calculateSomething(
currentStatel, currentState2);

-}

®

w
-
-
=

o

()]
Q
w

O

-

O
q

paAsasay sIYbIy 1Y — Zinge)] zuis

Phaser and StampedLock Concurrency Synchronizers

Code ldiom For Optimistic Read

B hublic double optimisticRead() { - We read field values |

long stamp = sl.tryOptimisticRead(); into local fields |

double currentStatel = statel, — -
currentState?2 = state?2, ... etc.;

=

8 if ('sl.validate(stamp)) {

- stamp = sl.readLock();

B try {

'2 currentStatel = statel;

o currentState2 = state?2, ... etc.;
o y finally <

5 : sl.unlockRead(stamp);

}

return calculateSomething(
currentStatel, currentState2);

pansasay sybry |1y — zInge)] zuleH #102Z-£10Z @

Phaser and StampedLock Concurrency Synchronizers

Code ldiom For Optimistic Read

B public double optimisticRead() {

long stamp = sl.tryOptimisticRead();

double currentStatel = statel,
currentState?2 = state?, ... etc.;

3

| if (!sl.validate(stamp)) { :

§ stamp = sl.readLock(); Next we validate |
= try { et A, that no write locks |
- currentStatel = statel; |
§ currentState2 = state2, . hav; been 1ssEeld !
g } finally A _In the meanwhile |
o

S

sl.unlockRead(stamp);

}
}

return calculateSomething(
currentStatel, currentState2);

pansasay sybry |1y — zInge)] zuleH #102Z-£10Z @

Phaser and StampedLock Concurrency Synchronizers

Code Idiom For Optimistic Read

B bublic double optimisticRead() { —————— e

long stamp = sl.tryOptimisticReﬂ If they have, then |

double currentStatel = statel, | we don't know if |

currentState2 = stateZ, | our state is clean |

if (!sl.validate(stamp)) A e
stamp = sl.readlLock();

try {

currentStatel statel; R -

currentState2 = state2, ... etc.; | Thus we acquire a

} finally A pessimistic read lock i

sl.unlockRead(stamp); and read the state E,(”

} i

- wx — 2Nge) ZUisH y1L02-€1L02 ©

3
®
w
-—
-+
S
8]
2
Q
w
O
>
O
q

}

return calculateSomething(
currentStatel, currentState2);

Phaser and StampedLock Concurrency Synchronizers

Optimistic Read In Point Class ¥

@

public double distanceFromOrigin() { N
long stamp = sl.tryOptimisticRead(); >
double currentX = x, currentY = y; =

“| if (!sl.validate(stamp)) { R
o stamp = sl.readlLock(); =
o currentX = x; . Shorter code path in N
§) 1C:L,' rrﬂtY {= yr optimistic read leads to better | =
- s%nanlgckRead(stam) - read performance than with | B
- . p ’ . I lg_
o 1 | examples in JavaDoc =
} gﬂ,_ - X
return Math.hypot(currentX, currentY); §

} 3

Q.

Phaser and StampedLock Concurrency Synchronizers

Retrying Optimistic Read Can Improve
Performance - Have Fun Tuning

private static final int RETRIES = 5;

public double distanceFromOrigin() {
int localX, localyY;

@
S
5
S
I
- -
o
M out: { N
P for (int i = @; i < RETRIES; i++) { &
= long stamp = sl.tryOptimisticRead(); g
.% localX = x; localY = y; ,
2 1f (sl.validate(stamp)) break out; >
» + P
S long stamp = sl.readLock(); // pessimistic read S
S try { d
localX = x; localY = vy, o
s finally { s
sl.unlockRead(stamp); o

I3

I3
return Math.hypot(localX, localY);

¥

Phaser and StampedLock Concurrency Synchronizers

Performance of StampedLock vs RWLock

® We researched ReentrantReadWriteLock in 2008

— Discovered serious starvation of writers (exclusive locks) in Java 5

g — And also some starvation of readers in Java 6

é — http://www.javaspecialists.eu/archive/lssue165.html

=

% ® StampedLock released to concurrency-interest list Oct 12
— Worse writer starvation than in the ReentrantReadWriteLock

S — Missed signals could cause StampedLock to deadlock

® Revision 1.35 released 28th Jan 2013

— Changed to use an explicit call to loadFence()

pansasay sybY || — zInge)y] zuleH $1L0Z-€1L0Z @

— Writers do not get starved anymore

— Works correctly

Phaser and StampedLock Concurrency Synchronizers

Performance of StampedLock vs RWLock

® In our test, we used
— lambda-8-b75-linux-x64-28 jan_2013.tar.gz

— Intel(R) Core(TM) i7 CPU 920 @ 2.67GHz
* L1-Cache: 256KiB, internal write-through instruction

g — Two CPUs, 4 Cores each, no hyperthreading
o e 2x4x1

=

21 - Ubuntu 9.10

o

a — 64-bit

w

S

S

e L2-Cache: 1MiB, internal write-through unified

pansasay sybY || — zInge)y] zuleH $1L0Z-€1L0Z @

e L3-Cache: 8MiB, internal write-back unified

— JavaSpecialists.eu server
* Never breaks a sweat delivering newsletters

Phaser and StampedLock Concurrency Synchronizers

Conversions To Pessimistic Reads

- | ® In our experiment, reads had to be converted to
pessimistic reads less than 10% of the time

— And in most cases, less than 1%

® This means the optimistic read worked most of the time

Javasp"qclousts.ou
pansasay sYbIy |1V — ZIngey zuieH ¥10Z-£10Z @

Phaser and StampedLock Concurrency Synchronizers

How much faster is StampedLock than

ReentrantReadWriteLock?

~ | ® With a single thread

Javasp'qclallsts.ou

X faster than ReadWriteLock

S

4.43x

Il Read Speedup
0 Write Speedup

0.00x

1.08x

R=1,W=0

R=0,W=1

pansasay syby |1y — zIngey) zuleH $10Z-€1L0Z @

Phaser and StampedLock Concurrency Synchronizers

How much faster is StampedLock than
ReentrantRead\WriteLock?

B Read Speedup

@
S
_ x
| @ With four threads B Write Speedup | RS
1000 B
o 353x S
o (@) N
> A &
4 £ 100 :
5 M= |
{3 :
M o 10 - 2
> (- g
s [é
+ 1.2X 2
g 2
§ 0.9x ?D
o Q.

0

R=4,W=0 R=3,W=1 R=2,W=2 R=1,W=3 R=0,W=4

Phaser and StampedLock Concurrency Synchronizers

How much faster is StampedLock than :

ReentrantRead\WriteLock? [Thrs demonstrates the starvatron

problem on readers In RWLock)
| ® With sixteen threads T

10000 I Read Speedup
[Write Speedup

1000

100

>
®
-
b
S
Q.
8
O
>
O
q

X
O
@)

—
0)

=

=

O
©
Q

oC

i

16,W=0 R=12,W=4 R=8,W=8 R=4,W=12 R=0,W=16

pansasay sybny Iy — zinge)] zujeH Vl«0¢

Phaser and StampedLock Concurrency Synchronizers

Reader Throughput with StampedLock
10000 [Read Throughput

@

N

(=

-

@

p— . n

% [0 Expected (linear to n cores) e

g =

®

: IQ E.
4 £ 3
: :
o = .
| 2 1000 |
® 9 =
Q = =
o B 2
q 3 2
dl 5 :
g

®

£ ?.,

100 - il

1 2 4 3 16

Number of Reader Threads (no Writers)

Phaser and StampedLock Concurrency Synchronizers

Writer Throughput with StampedLock

2.0

B Write Throughpu

@)
N
=)
-
@
)
o
-_—
>
-
o
S
N
A
)
o
c
N
|
>
s
Q
>
e
n)
A
®
»
®
>
®
o

Javaspecialists.eu
~ | Throughput (Linear Scale)

1 2 4 38 16

Number of Writer Threads (no Readers)

Javasp'qclallsts.ou

Phaser and StampedLock Concurrency Synchronizers

Mixed Reader Throughput with StampedLock

Throughput (Logarithmic
Scale)

10000

1000

M

100

10

[Read Throughput

16 1514131211109 8 7 6 5 4 3 2 1
Number of Reader Threads (16 - n Writers)

pansasay syby |1y — zIngey) zuleH $10Z-€1L0Z @

Phaser and StampedLock Concurrency Synchronizers

Mixed Reader Throughput with RWLock

ReentrantReadWritelLock

@)

o

®

N

100 §

0 [Read Throughput Ic

2 .,-E 10 - S

o 1ITIT

=N D _ 1 - =

S N

Sy :

& - -

3 C S

> O) =

S B @

O 0.01 2
0.001 - ~ Shows
161514131211109 8 7 6 5 4 3 2 1 | Reader

Number of Reader Threads (16 - n | Starvation

Writers)

1n RWLoc |

Phaser and StampedLock Concurrency Synchronizers

Conclusion Of Performance Analysis

- | ® StampedLock performed very well in all our tests
— Much faster than ReentrantReadWriteLock

® Offers a way to do optimistic locking in Java

® Good idioms have a big impact on the performance

Javasp"qclousts.ou
pansasay sYbIy |1V — ZIngey zuieH ¥10Z-£10Z @

© 2013-2014 Heinz Kabutz - All Rights Reserved

™
O

.Javqggggml&tg.eu

“ Where to next?

Phaser and StampedLock Concurrency Synchronizers

JSR 166

~ | ® http:/Igee.cs.oswego.edu/

® Concurrency-Interest mailing list

— Usage patterns and bug reports on Phaser and StampedLock are
always welcome on the list

Jovasp"qclousts.ou
paAsasay sybiy |1y — Zyngey] zuieH y10Z-£1L0Z @

Phaser and StampedLock Concurrency Synchronizers 85

Phaser and StampedLock
Concurrency Synchronizers

heinz@kabutz.net

javaspecialists.eu

pansesay sybry |1y — zInge)y] zuleH $10Z-€10Z @

O Javaspecialisis.eu
java rraining

